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ABSTRACT 

The spontaneous breaking of an exact conformal symmetry provides a 

mechanism for the zeroing of the cosmological constant, but it does so 

in a manner which violates either unitarity or known phenomenology. 
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There are a few reasons known to explain why the cosmological 

constant should be as small as it is observed to be. In this note, I 

show how the spontaneous breaking of conformal symmetry, in a unified 

theory with exact conformal symmetry, can produce zero cosmological 

constant without requiring other dimensional parameters, such as 

Newton's constant, masses, and so on, to vanish. Unfortunately, it 

appears as if the "conformal" solution to the cosmological constant 

problem is like that of supersynxnetryl: it works, but it does not apply 

to the universe we find ourselves in. For supersymnetry, this is simply 

because our universe is not supersymnetric; it is less obvious why the 

conformal solution does not apply. I present my arguments in the hope I 

might have overlooked some loophole. 

The suspicion that the cosmological constant problem could be 

related to spontaneously broken conformal symmetry is based on an 

analogy which, while suggestive, is not precise. Suppose one has a 

unified theory, of both gravity and matter, that is conformally 

symnetric. This means that the effective action must be invariant under 

local conformal transformations generated by X(x): 

A ( s~,(x),o(x),~(x),A~(x) . . . 1 

e2x(x)guy(x),e-"(x)$(x),e-3'2A(x)~(x),A~(x)...) . 

(1) 

The effective action A is a functional over background fields from the 

3 metric, gVV(x) (and, possibly, spin- 2 fields if there is local 

supersymfietry), and matter; +(x),$(x), and Au(x) represent any number of 

spin-O, -4, and -1 fields, respectively. 
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BY Noether's theorem, corresponding to global conformal 

transformations, X(x) = constant, there is a dilatation current, JF. For 

any theory, the trace of the stress-energy tensor is equal to the 

divergence of the dilatation current, TVn = JE;u. If the theory, and its 

vacuum, are conformally synmetric, we see that TnV = JF. = 0: the 
¶P 

explicit symnetry only allows dimensionless couplings in the action. 

Suppose, however, that while the theory is conformally symmetric, 

the vacuum that the theory chooses is not. Suppose further that this 

conformally asynmetric vacuum has flat space-time. The stress-energy 

tensor, as I am using it here, is complete, and includes the 

contribution of all matter and gravitational fields. Thus the vacuum 

expectation value of its trace is directly related to the cosmological 

constant, k-cTnV>. As for the dilatation current, it will act in a 

non-trivial fashion on the vacuum, but the remnant of the exact symmetry 

in the original theory is that matrix elements of its divergence vanish 

at zero momentum, as (momentum)*. Consequently, the conformal symmetry 

requires the cosmological constant to vanish: A-<Tn > = <J' 
P 

o,v> = 0. 

This argument is not as trivial as it might first appear. If one 

had a theory which was scale symmetric in flat but not curved 

space-time*, a scale asymmetric vacuum might have A = 0 classically, but 

generally a non-zero value for A will be generated by loop effects. 

This, of course, is the usual problem with the cosmological constant. 

In contrast, for a theory which is conformally symmetric in curved 

space-time, if it can be shown that the vacuum is scale asymmetric and 

has flat space-time, not only is A = 0 classlcally, but the conformal 

symmetry ensures that it will stay zero, even when the effects of any 

interactions, perturbative or not, are included. In other words, in 
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most theories, while a vacuum with flat space-time will be stable with 

respect to fluctuations in the matter fields, this does not imply that 

the vacuum is stable to leading order in guV; if A#0 is produced by 

quantum effects, the vacuum is not. With conformal symmetry, however, 

if the vacuum has flat space-time to begin with, the conformal symmetry 

guarantees that it will always remain stable to leading order in gpv, A 

= 0. This does not mean that in conformally symnetric theories, that 

any asymmetric vacuum need have flat space-time--this is determined by 

the dynamics--and only stability to leading order in g TV is assured. 

Even so, this is far more than what one would have without conformal 

symmetry, since the asymnetric vacuum may have non-zero values for 

masses and other dimensional parameters, with the sole exception of A. 

In the following, I demonstrate the correctness of this naive 

intuition. For simplicity, I take the symmetry breaking to be due to 

one, and then several, scalar fields, including only the effects of 

these fields and of the metric in the analysis. Alternately, the 

symmetry breaking could be due to composite operators for higher spin 

fields, such as tr(&) or tr(FVV2), but this does not alter the 

conclusions. 

On one point, the preceeding argument is rather misleading. As a 

system with a spontaneously broken symmetry, shouldn't there be a 

massless, spin-zero excitation, a dilaton, generated by the action of 

the dilatation current on the vacuum? For the case of a single scalar 

field, with non-zero vacuum expectation value, the couplings of that 

scalar field do end up looking like those of a dilaton. When several 

scalar fields develop non-zero vacuum expectation values though, usually 

the only massless field is the graviton, which manifestly is not 
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spin-zero. 

Why is there no dilaton,4 even when the asynmetric vacuum has flat 

space-time? The reason lies in the form of the dilatation current. 

Take a single scalar field, 4, conformally coupled to the metric. The 

kinetic energy of the field, +(a,$)*, contributes $an$ to JE, while the 

conformal coupling,-(1/12)R+*, contributes -@an+ to JE, with the total 

zero. The same thing happens for fermions- the contribution of the 

kinetic energy to Jl cancels against that of the spin connection. Since 

spin-l fields are conformally invariant, eq. (l), we see that matter 

fields do not contribute at all to J:. 

It must be emphasized that the assumption of exact conformal 

symmetry greatly restricts the class of theories to which my arguments 

apply. For the coupling of the metric tensor to itself to be 

conformally symmetric, only a term - C ol8Y8 caBy* (caQyS = Weyl tensor) 

is permitted, to the exclusion of an Einstein term, etc. Hence the 

purely gravitational part of the action must involve higher derivatives. 

While there is some hope that such theories are unitary in spite of 

their higher derivatives,5'6 this is far from certain. 

Even for a theory which is conformally symmetric at the classical 

level, usually quantum effects will destroy this symnetry through the 

conformal anomaly'. To retain the exact conformal symmetry, I need to 

insist that the unified theory be finite8. That is, for each and every 

coupling of matter and gravity, the corresponding E-function must 

vanish. It is possible that there are no theories which satisfy these 

conditions, although Fradkin and Tseytlin8 have advanced several 

possible candidates. 
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Going beyond the usual confines of field theory, Englert, Truffin, 

and Gastmans' have proposed modifying theories in 4-c dimensions so that 

they have no conformal anomaly but non-zero E-functions in four 

dimensions. Antonlades and Tsamis6 have used their mechanism to relate 

conformal synmetry breaking to the cosmological constant in these 

theories. While our assumptions are very different, the arguments that 

I give are sufficiently general that they apply to the theories of 

Antoniades and Tsamis as well. 

With these qualifications aside, I turn to the analysis. 

I. SINGLE SCALAR FIELD 

Let the scalar field which acquires a vacuum expectation value be 

e- I assume that the vacuum has flat space-time, gV, = nnV, with <a> = 

+o. Defining oq = +-eo, I expand the effective action to quartic order 

in 0 q, including all terms up to two derivatives: 

A = ld4x J; -&R-2") 

- 3zIsv”(ap~q) (avoql + m2mq2 + g30q3 + g4eq4 (2) 

t c R$q + d Rmq2 
4 * 

Z represents a (finite) term for wave-function renormalization of $. A 

term linear in +q is excluded by the premise that the true vacuum has 

<+I> = o. in flat space-time. Under the assumptions given, there are 

other terms which could contribute to A, such as gV"(aV$q)(a,,Qq)+q, 

but by the arguments to follow these can be shown not to contribute. 
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Except for + and glrV, the dependence of A on all other fields in the 

problem is ignored. 

The local conformal synmetry of the theory is not manifest in the 

effective action of eq. (2). It does imply relations between the 

various terms in eq. (2), which can be obtained merely by using the 

invariance of A under global conformal transformations. To first order 

in h(x) = 1, 

6A _ 
ix- J d4x i *g,,,,(x) ;; 

vv 
(x) - @(Xl f&yJj = 0 (3) 

evaluated at any point in the function space of g,,(x) and $(x). For 

the vacuum state, this gives 

J 
II" 

(x) 

(4) 

= $ J d4x + @-- 
0 W(X) 

=o . 
g = 

F" %v 

Thus the most elementary Ward identity of conformal symmetry, eq. (3), 

suffices to show that A = 0 in a conformally asymnetric vacuum with flat 

space-time. 

I proceed now in a manner which, while not the most clever, is most 

directly generalizable to the case where several scalar fields develop 

vacuum expectation values. 
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62A - 
*x2 

9 =n 
P” vu 

9 = “0 

= JJ 4qpvqPcY 
**A 

6gp%l 

(5) 

2 

-4qllY+o ig" sg + 90 
2 &*A 

- 
=o 

PV w* 
9 =n 
v'y vv 

9 = $0 

For notational ease, the explicit dependence of the fields on the 

space-time coordinates xv has been dropped. Using the identity 

J +(%>I g =n w w 

(6) 

eq. (5) becomes 

JJ 4ywqlpb 
S2A (7) 

yw6Qpc I 
=JJ oo2 $1 . 

9 =q 9 =q 
P PV vu PV 

0 = 00 9 = $0 
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To evaluate this, one defines g,, = nn\, + huv, and expands the Einstein 

action to quadratic order in hny. It is necessary to use the conformal 

gauge, hpv." = + hy";v, so that gauge-fixing terms do not contribute. 
, 

Then 

JJ n P” nP(l $ 6g = JJ + &(-a*1 . 
&Iv PO 

9 =n P” P” 
0 = 90 

Since 

JJ o. 263 

M2 
= JJ -Z+02(-a2tm2) , 

= 
g npv P” 

e = 90 

Eq. (7) gives 

m* = 0, (8) 
and 

1 - = _ b eo* 
16nG 

. (9) 

The conformal symmetry requires $q to be massless. Moreover, if 

Newton's constant is to have the right sign, G > 0, the scalar field 

must be a ghost-like field, Z < 0 (for real $,). 

One continues in a similar vein, using various conformal Ward 

identities to obtain further restrictions on A. From 
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JJ +02 ‘* &T (%)I 
9 =n 

P" P" 

Q = tJ0 

= JJJ { *~py+02 ;; 6e2 - *go2 $ 
lJ” 

(10) 

-$ 3 24 
I/ 

= 
0 

ho3 
0 

9 =n 
P" P" 

Only the kinetic energy of the oq field contributes to the first two 

terms on the right hand side of eq. (lo), and its contribution cancels 

between them. This leaves 

JJJ oo3 $1 = 0 , 
= 

g np” P” 

0 = 00 

which requires the trilinear I$: coupling to vanish, 

!il3=0 , 

and excludes a term as gV"(aV$q)[av$q)+q. From 

(11) 

(12) 
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JJJ oo3 ~~~1 1 
9 =n V” P” 
$ = 

$0 

3 4 
- 3 ,+03 LL$ - ,#04 q 

a+ s-t- il 

= JJJJ .so3g 64A 
v” WV”W3 

(13) 

9 =n 
P” P” 

0 = 00 

since there are no terms cubic in @ 
q' 

this becomes 

JJJJ oo4 $1 =o ) 

9 =n 
P" IJ" 

9 = 40 

so the four-point $q coupling vanishes, 

!34=0 , 

(14) 

(15) 

and a term as gn"[ar~,)(a+,]~,* is prohibited. 

To fix the remaining terms in the effective action, I consider the 

conformal Ward identities at a point where .$ = I$~, but gKv is arbitrary. 

Eq. (3) gives rise to terms -R, which upon use of eq. (3), determines 

the Rqq term: 

c=-$$o . 

Likewise, evaluating eq. (6) at this point gives 

(1’5) 
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d = - l/6 . (17) 

We see that the two, three, and four point terms for $q vanish. It 

is easy to show that this is true for all couplings of $q at zero 

momentum. The effective potential for $,V($), is obtained from the 

effective action by requiring all fields to be constant in space-time: 

A = -3 z J d4x J; v(+) . 
c nstart 
8 P"' 

(18) 

If we Plug this into eq. (3), and set gpv = npvr but leave 0 arbitrary, 

we can solve for V(a): 

V(4) = !34@4 (19) 

In theories with renormalization, non-trivial forms for V(O) can develop 

at the quantum level, since then a renormalization mass scale u enters, 

and functions of +/l.~ can occur. In a finite, conformally symmetric 

theory, the bare and renormalized potentials must each have the same 

simple form, -$4. 

For g4#0, the only vacuum is flat space-time is $I = 0. When g4 = 

0, without a potential for 0, any value of o = $. will do. 

Consequently, and while it was not obvious at first, the 

cosmological constant is zero because the $ self-coupling is set to 

zero, at least implicitly. 10 In a finite theory, this is not entirely 

arbitrary, since if all a-functions vanish, the bare value of each 

coupling must be specified as initial data for our universe. More to 

the point, this will no longer be true when more than one scalar field 

develops a non-zero vacuum expectation value. 
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The effective action can be worked out as before. The result is 

A r -2 J d4x ~iii ( + f gpv(a,,oq] (avbq] 

(20) 

-- i2 R ($o+~ql 2 + g4(Q0+9q14 f - 

Newton's constant is given by eq. (9), and the cosmological constant 

can be read off from eq. (20) as 

kc= - z!3400 
4 

9 

For any value of g4, the conformally asynxnetric vacuum is 0 =eo, In a 

space-time with R = 4 A. For Z < 0 and g4>0. this corresponds to de 

Sitter space-time. 

What about the fact that eq is a ghost-like field, Z < O? Here an 

old trick of Deser's" can be used. Redefine the metric tensor as 

9' =I 
M2 

P' 00 
1 gpv . 

In terms of giv, the effective action Is 

A = J d4x &' & [RI-2~) , 

(22) 

where the Ricci scalar R' is constructed from g 
PJ' 

Hence the ghost field 

has disappeared, and we are left with Einstein gravity. At least in 

this instance, the ghost field can be eliminated by the proper choice of 

a conformal gauge. 
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SEVERAL SCALAR FIELDS 

The generalization to the case where several scalar fields have 

non-zero vacuum expectation values is immediate. Besides @. I take the 

other scalar fields to be z', s' = ;,i, t ;'. 
9 

I assume that in flat 

space-time, <$> = $. For the effective action, 

A = + J d4x 4; 
1 

- & (R-2~1 - Z (3s'"(a,es) [av+ql 

2 2 +*me q + g30q3 + g4@q 4 > + 1 3 cP’(a,l$ (a&l 
i 

+ 3 iii2[Q2 + 2 ; i.W$&k + ;r; 

l,j,k 3 
444 

i,j,k,l 

- ijklQ$$; 
94 

} 

Thls Is not the most general form of the effective action possible, but 

it will serve to illustrate the essential points. The fields T' are all 

taken to be physical scalars, with wave function renormalization = +l. 

Their coupling, ;j;j" and 5ijk1, are symmetric in all indices. Terms 

-Req, -RTi, etc., are ignored. Eq. (3) becomes: 

$ = J { zgpv + - + $ - pi 2 f = o . 
PV 

(25) 

Since terms linear in 0 and Gi are excluded by assumption, eq. (25) 

evaluated at g 
P 

= n ,,.o = 00' and ai = Gi o, gives 

A=0 . 

Eq. (7) becomes 
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JJ pv p(r $ ag 4n n 
pv PO 

9 =n 
P WV 

$ = 00 

;i = ;I 
0 

(26) 

= JJ { oo2 $ + @I2 ;;;1l2 }I 9 
9 =Q PV vu 
9 = Qo 

;I = $i 
0 

The terms --a2 determine Newton's constant: 

-J- = t +y (-zo; - ,#]2] 
16nG i" 

. (27) 

There is no difficulty in satisfying G > 0, if we take e to be a ghost 

field as before, Z < 0, with eo- Planck mass, while all other scale 

fields have expectation values far below that, aA<<eo. 

However, eq. (26) must also be true for the terms at zero momentum: 

Zm2$02 + v ;iii2(soi)2 = 0 . 

Likewise, the generallzation of eqs. (11) and (12) give 

Zg3b03 + z 93 "0 $0 40 
-ijk- i- j-k = o 3 

',j,k 

(28) 

(29) 

while that of eqs. (14) and (15) yields 
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-ijkl- i- j- k- 
$0 +o $0 00 

1 = o 
(30) 

Previously, we found that the couplings of the scalar $ had to vanish at 

zero momentum, like those of a dllaton. When there are several scalar 

fields, we see that only sums over all scalar fields with eo+O need 

vanish, and there is no dilaton. 

Algebraically, it is not difficult to satisfy these relations. 

Since by assumption 2 < 0, all other couplings and masses can be taken 

to be positive. 

The problem is that the resulting theory does not seem to make 

sense. Consider just eq. (28). There certainly has to be at least one 

field below the Planck scale which acquires a vacuum expectation value, 

a$09 with non-zero mass, i?1:+0. If nothing else, in QCO, <$$>#O, and 

there is no Ot meson lighter than the pion. Hence m2+0. But if m2+0, 

the +-dependent part of the effective action is no longer conformally 

invariant, and so the transformation of eq. (22) doesn't serve to 

eliminate $ q: the mass term becomes 

Jd4x JG m2pq2 

+ Jd4x $jT m2 +2 

9 jl" + g,v b+oq/do14 q * 
(31) 

In fact, one can convince oneself that there is no local redifinition of 

the fields which will serve to eliminate oq from the effective action. 
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Perhaps the same miracle which serves to make the higher derivative 

part of the gravitational action unitary could also work for the bq 

field. However, the problem with higher derivative gravity concerns 

ghost states with masses at the Planck scale. 5'6 From eq. (27), 

m2-iii2(~0i/+0]2, so if soi <<eo, the eq mass is much smaller than that 

of the other physical fields, m<<mi. It seems dubious that a mechanism 

to implement unitarity at the Planck scale would care about, or affect, 

an extremely light field. Even so, since the unitarity of higher 

derivative gravity remains in doubt, logically this possibility cannot 

be excluded. 

A final hope Is that the eq ghost is "eaten" by some sort of 

conformal Higgs effect, but I am unable to imagine how this could 

actually come about. 
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